Mérő László: Maga itt a tánctanár?

Matek-giccs

  • Mérő László
  • 2004. július 1.

Egotrip

Kevés matematikust ismerek, aki szeret számolni, körülbelül ugyanannyira keveset, mint futballistát, aki szeret futni. Persze mindkettõnek tudnia kell valamennyire mesterségének ezt a velejáróját is, csinálnia is kell, ha a helyzet úgy hozza, de nem ezt szeretik benne. A focista tevékenységét mindannyian értjük valamennyire, ezért nem gondoljuk róla, hogy õ elsõsorban egy futó, aki elõtt néha ott pattog egy labda is. A matematikusét azonban kevesen értik igazán, ezért gondolják róla a legtöbben, hogy elsõsorban számol.

 

A matematikus attól matematikus, hogy velejükig absztrakt objektumokkal dolgozik. Amikor matematikát csinál, nem érdekli, van-e közük ezeknek az objektumoknak a világ bármiféle valós jelenségéhez. Akár egy skatulya gyufa, néhány sliccgomb meg egy tubus fogkrém segítségével is definiál valamiféle struktúrát, és arra kíváncsi, vannak-e ennek a struktúrának mély, rejtett összefüggései egyéb, egészen másképpen definiált matematikai struktúrákkal. Ha sikerül ilyen összefüggéseket találni, akkor nem halandzsa az új struktúra, bármilyen abszurdul hangozzék is a hétköznapi értelem számára. Különben viszont akkor is halandzsa, ha gyufák és cseresznyemagok helyett komoly tudományok (a fizika, a kémia vagy akár a pszichológia) fogalmait használja és látványos képletekkel operál.

Íme egy híres és meghökkentõen egyszerû képlet: eip= -1. Leonhard Euler, a nagy svájci matematikus ezt a képletet vésette a sírkövére, mert az összes eredménye közül erre volt a legbüszkébb. Ez a képlet teremti meg az összefüggést három egymástól látszólag teljesen független fogalom: a természetes logaritmus alapszáma (az e), a komplex számok képzetes része (az i) és a kör kerületének és átmérõjének aránya (a p) között.

Az e és a bár nehezen megragadható, de biztosan létezõ számok, amelyeket nyilvánvalóan érdemes minél pontosabban megismerni. Az i viszont távolról sem ilyen. Az i-t úgy definiálták, mint egy olyan szám, amelynek a négyzete -1, miközben pontosan tudták, hogy egyetlen szám négyzete sem lehet negatív. Mi értelme lehet egy olyan fogalomalkotásnak, amelyrõl biztosan tudjuk, hogy a való világ egyetlen objektuma sem elégítheti ki?

Akár létezik a való világban az i, akár nem, az i-vel kiválóan tudnak számolni a matematikusok. Mármost ha a végeredményben már nem szerepel az i, akkor az eredmény tökéletesen értelmezhetõ akkor is, ha az eredményhez vezetõ út esetleg kicsit obskúrus. Ami még fontosabb, az így kapott eredmények a gyakorlat próbáját is mindig kiállták. Érdemesnek bizonyult hát az i-vel számolgatni, akár létezik a valódi világban, akár nem. De ez önmagában még különösebben nem izgatta volna a matematikusok fantáziáját - legfeljebb csak annyira, mint a futballistákét a futás. Euler képlete azonban egészen más megvilágításba helyezte az i számot. Az i ezzel belesimult a matematika teljes építményébe, meglett a kapcsolat a matematika korábbi struktúrái és az új, az i-t is tartalmazó struktúra között.

Az imént csak három érdekes fogalomról beszéltem Euler képletében, az e-rõl, a p-rõl és az i-rõl. Pedig a negyedik, a -1 legalább ugyanannyira érdekes benne. Ugyanis már az is egy olyan absztrakció, amely a valódi világban nem létezik. Csak éppen ezt jobban megszoktuk, és már-már úgy érezzük, hogy valóban létezik is. Nos, Euler képletében valójában a régi, már megszokott matematikai absztrakció (a -1) és az új (az i) jött össze, és az már csak hab a tortán, hogy ehhez a két legérdekesebb valódi szám (az e és a p) asszisztál.

Eddig egy szép, mondhatnám: mûvészi matematikai képet (vagy képletet, mindegy) elemeztünk. Csakhogy a matematikában sem minden kép vagy képlet ilyen szép. Itt is vannak szép számmal giccsek. Matematikai giccs az, amit az imént halandzsának neveztem: ami nem függ össze érdekes, váratlan módon egészen máshol felmerült, egészen másfajta matematikai struktúrákkal. A matematikai giccs, mint minden giccs, csakis önmagáról szól; a rajta kívüli világról nem mond semmi érdekeset, újat.

Ilyen matematikai giccs például a híres négyszínsejtés, illetve 25-30 éve már: négyszíntétel. Ez a tétel azt mondja ki, hogy minden térkép kiszínezhetõ négy színnel úgy, hogy a szomszédos országok mindig különbözõ színûek legyenek. Jó száz évig nem sikerült ezt bebizonyítani, míg végül számítógép intenzív használatával sikerült az összes érdemi eset végére járni, és a tétel bizonyítást nyert. Csakhogy eközben semmi érdekes összefüggés semmiféle egyéb matematikai struktúrával nem derült ki. Tehát a tétel ízig-vérig giccs. Ezt sok jó ízlésû matematikus már akkor is érezte, amikor még a tétel nem volt bebizonyítva. De csak ritkán, csak szûk baráti körben merték ezt kimondani, hiszen amíg nincs bebizonyítva, addig nem zárható ki, hogy épp a bizonyítás során derül ki valami mély strukturális összefüggés a matematika egyéb ágaival.

Tipikusan nem matematikai giccs például a Nagy Fermat sejtés, amely azt mondja ki, hogy 2-nél nagyobb számok esetén az an+bn=cn egyenletnek nincs olyan megoldása, ahol a, b, c és n is egész szám. (n=2-re még van, pl: 32+42=52.) Ezt a sejtést több mint 300 évig senki sem tudta bebizonyítani, míg végre néhány éve egy Andrew Wiles nevû amerikai matematikusnak sikerült. A bizonyításhoz három-négy, egymástól gyökeresen különbözõ matematikai diszciplína együttes alkalmazása kellett - ami önmagában is mutatja, hogy - ellentétben a négyszíntétellel - ez a tétel távolról sem matematikai giccs. Azt, hogy egy mûalkotás giccs vagy sem, mindig az határozza meg, ami mögötte van. Ez magán a mûvön már sokszor csak a legavatottabbak számára vehetõ észre.

Amit itt a giccsrõl beszéltünk, az távolról sem matematika. Azt viszont mutatja, miért tud a matematika még olyan dolgokban is érdekes lenni, amelyekben a legkevéssé sem illetékes. Egy ennyire absztrakt területen sokkal egyértelmûbben lehetett értelmezni a giccs fogalmát, mint a mûvészet bonyolult, hús-vér világában. Vagy akár a politikában - mostanában nálunk az életnek ez a területe produkálja a legborzalmasabb giccseket.

Figyelmébe ajánljuk

Tendencia

Minden tanítások legveszélyesebbike az, hogy nekünk van igazunk és senki másnak. A második legveszélyesebb tanítás az, hogy minden tanítás egyenértékű, ezért el kell tűrni azok jelenlétét.

Bekerített testek

A nyolcvanas éveiben járó, olasz származású, New Yorkban élő feminista aktivista és társadalomtudós műveiből eddig csak néhány részlet jelent meg magyarul, azok is csupán internetes felületeken. Most azonban hét fejezetben, könnyebben befogadható, ismeretterjesztő formában végre megismerhetjük 2004-es fő műve, a Caliban and the Witch legfontosabb felvetéseit.

„Nem volt semmi másuk”

Temették már el élve, töltött napokat egy jégtömbbe zárva, és megdöntötte például a lélegzet-visszatartás világrekordját is. Az extrém illuzionista-túlélési-állóképességi mutatványairól ismert amerikai David Blaine legújabb műsorában körbejárja a világot, hogy felfedezze a különböző kultúrákban rejlő varázslatokat, és a valódi mesterektől tanulja el a trükköket. 

Játék és muzsika

Ugyanaz a nóta. A Budapesti Fesztiválzenekarnak telefonon üzenték meg, hogy 700 millió forinttal kevesebb állami támogatást kapnak az együttes által megigényelt összegnél.

A klónok háborúja

Március 24-én startolt a Tisza Párt Nemzet Hangja elnevezésű alternatív népszavazása, és azóta egyetlen nap sem telt el úgy, hogy ne érte volna atrocitás az aktivistákat.

Hatás és ellenhatás

  • Krekó Péter
  • Hunyadi Bulcsú

Az európai szélsőjobb úgy vágyott Donald Trumpra, mint a megváltóra. Megérkezik, majd együtt elintézik „Brüsszelt” meg minden liberális devianciát! Ám az új elnök egyes intézkedései, például az Európával szemben tervezett védővámok, éppen az ő szavazó­táborukat sújtanák. Egyáltalán: bízhat-e egy igazi európai a szuverenista Amerikában?

„Egy normális országban”

Borús, esős időben több száz fő, neonácik és civilek állnak a Somogy megyei Fonó község központjában. Nemzeti és Mi Hazánk-os zászlók lobognak a szélben. Tyirityán Zsolt, a Betyársereg vezetője és Toroczkai László, a szélsőjobboldali párt elnöke is beszédet mond. A résztvevők a lehangoló idő ellenére azért gyűltek össze szombat délután, mert pár hete szörnyű esemény történt a faluban. Március 14-én egy 31 éves ámokfutó fahusánggal rontott rá helyi lakosokra: egy középkorú és egy idős nő belehalt a támadásba, egy idős férfi súlyos sérüléseket szenvedett.