Egy japán és egy kanadai kutató kapta az idei fizikai Nobel-díjat a „neutrínóoszcilláció jelenségének igazolásáért, így a Napból érkező neutrínók rejtélyének megoldásáért”. Úttörő munkájuknak köszönhetően egyre több részlet derül ki az apró elemi részecskék viselkedéséről. Immár biztosnak tűnik, hogy nekik is van tömegük, ha nem is sok.
Részecskék több ízben
A neutrínók régóta boldog lakói a fizika úgynevezett standard modellje által definiált részecskecsaládnak. Azon belül az úgynevezett leptonok közé tartoznak, akárcsak jó ismerőseink, az elektronok, illetve a jóval egzotikusabb müonok és tau-részecskék (vagy tau-leptonok). A neutrínók csodája, hogy elektromos töltésük eleve nincs, innen ered nevük is – „semlegeske” –, s a gravitációt kivéve csupán gyenge kölcsönhatásban vesznek részt. Miután a kvarkhármasokból felépülő barionos anyag (például a mi nagyon is kézzelfogható, proton-neutron alapú univerzumunk) nem zavarja mozgásukat, de nem is vonzza őket, így bolygónkat is levegőnek nézik, s szinte veszteségmentesen repülnek át rajta. Hipotetikusan még egy teljes fényév vastagságú ólomtömbön is átjutna egy neutrínónyalábnak legalább a fele! Mindenesetre neutrínót mérni azért is nehéz, mert már a mérés is kölcsönhatást feltételez, vagyis a detektálás is gondot jelenthet (az ebből adódó néha abszurd fejleményekről lásd: Siet haza, Magyar Narancs, 2011. október 6.). De bármily nehéz észlelni a neutrínókat, hosszú évtizedek óta kutatják tulajdonságaikat. Már a 60-as években folytatott kísérletek is arra utaltak, hogy annak ellenére van tömegük, hogy még a könnyűsúlyú leptonok között is légiesnek tűnnek. Tulajdonképpen ez volt az a rejtély, amelyet gyakorlatilag a részecske ötvenes évekbeli felfedezése (sőt a svájci Wolfgang Pauli 1930-as, a neutrínó létezésére vonatkozó híres jóslata) óta megpróbáltak tisztázni.
Az elméleti modellek szerint a neutrínók lenyűgöző számban bolyonganak az univerzumban és közvetlen kozmikus szomszédságunkban. Ám a Földön működő detektorok rendre kevesebbet érzékelnek közülük, mint amennyinek a Napban (és valamennyi más csillagban) zajló termonukleáris reakciók közben keletkeznie kell – és a hiánnyal valahogy mégiscsak illene elszámolni! (Ezt nevezik Nap-neutrínó-problémának.) A kutatók régóta tudják, hogy mi lehet a látszólagos paradoxon forrása. Neutrínóból háromfélét ismer a fizika: elektron-, müon- és tau-neutrínót, attól függően, hogy melyik más, egyaránt negatív töltésű leptonnal hozza kapcsolatba őket a standard modell. Márpedig az e célra használt berendezések pusztán a Napból érkező elektron-neutrínók észlelésére voltak érzékenyek, s ha azok valamilyen oknál fogva, mondjuk egy oszcillációs folyamat során megváltoztak, átalakultak, akkor az észlelésükre szolgáló berendezések képtelenek voltak a jelenlétüket detektálni. A neutrínóoszcilláció hosszú időn át a legvalószínűbb hipotézisnek tűnt a részecskehiány magyarázatára, de igazolni csupán jó másfél évtizede sikerült. 1998-ban a japán Super-Kamiokande nevű neutrínóobszervatórium egyik kutatócsoportja a most díjazott Kadzsita Takaaki vezetésével a földi légkörbe hatoló kozmikus sugárzás által életre keltett neutrínókat vizsgálta, és úgy találta, hogy ezek részecskefizikai értelemben két „íz” (flavour) között oszcilláltak, mielőtt elérték volna a Kamioka-hegy alatt található detektort. 2001 augusztusában a kanadai Ontario tartományban – egy bánya mélyén, 2100 méterrel a felszín alatt – található Sudbury Neutrínó Obszervatórium kutatói Arthur B. McDonald (a másik díjazott) vezetésével észlelték, amint a Napból érkező elektron-neutrínók müon- és tau-neutrínókká oszcilláltak. Ráadásul a kis különbséggel publikált két kísérleti eredmény egyaránt arra mutatott, hogy a részecskefizika standard modellje több sebből vérzik – hogy mást ne mondjunk, annak eredeti feltételezése szerint a neutrínónak nincs is tömege, márpedig ha a neutrínó képes oszcillálni, akkor a kvantummechanika törvényei szerint igenis rendelkezik némi tömeggel. 2010 júniusában fizikusok egy csoportja a galaxisok eloszlását tanulmányozva arra a következtetésre jutott, hogy a neutrínók tömege alig egymilliárdod része egy hidrogénatoménak. De legyen bármily kicsi egyetlen neutrínó tömege, s képviseljenek csupán egy százalékot a világegyetem (az általunk ismert anyagfélék által reprezentált) tömegéből, a kozmológiai és a csillagok energiatermelési folyamataiban játszott szerepük nehezen túlbecsülhető. Sőt, lehet, hogy belőlük áll az úgynevezett forró sötét anyag is!
Annyi már most is bizonyos, hogy a csillagokban, így a Napban tapasztalható neutrínóaktivitás szoros kapcsolatban állhat az ott zajló mágneses aktivitással. Márpedig a napkitörések, flerek a fő forrásai a Földet érő, enyhébb esetben sarki fényt, extrém esetekben felszíni zavarokat is okozó intenzív részecskezápornak, kozmikus sugárzásnak és mágnesesen töltött napanyagnak. Már sci-fi katasztrófafilm is készült, melyben szokatlanul viselkedő, s a földmaggal kölcsönhatásba lépő neutrínók okozzák Földünk végzetét: Roland Emmerich 2012 című bombasztikus alkotása sok minden más mellett szerencsére a tudományos alapot is nélkülözi.
A fizika James Bondja
Bár a standard modell érvényessége szempontjából is kulcsfontosságú neutrínókutatásokért sokan kaptak Nobel-díjat az utóbbi évtizedekben, a legfontosabb tudománytörténeti szerep egy olyan tudósnak jutott, aki nem csak fizikusi életművével vált híressé. A neves olasz filmrendező, Gillo Pontecorvo testvére, Bruno Pontecorvo (1913–1993) Enrico Fermi tanítványaként és munkatársaként még a 30-as években kapcsolódott a fizikai kutatásokba. A Via Panisperna-i srácoknak (I ragazzi di Via Panisperna) becézett kutatócsoportban együtt tisztázták kísérleti úton a láncreakció szempontjából kulcsfontosságú lassú neutronok tulajdonságait: Fermi 1938-ban ezért kapott fizikai Nobel-díjat. Pontecorvót a szigorodó olasz faji törvények külföldre kényszerítették, s az előrenyomuló nácik elől menekült a tengerentúlra. Ám professzorától eltérően nem kapott szerepet az amerikai Manhattan-tervben – már ekkor kommunistagyanúsnak tartották. Előbb egy olajvállalatnál hasznosította a lassú neutronokról szerzett tudását, majd a kanadai Montreal Laboratóriumban, a brit nukleáris kutatás csúcsintézményében kapott munkát: itt is a kozmikus sugárzás sajátosságaival, a neutrínók tulajdonságaival és a müonok bomlásával foglalkozott. 1948-tól már közvetlenül a brit atombomba-programban (AERE) dolgozott, amelynek jelentősége akkor vált nyilvánvalóvá, amikor 1950-ben a hidegháború kellős közepén családjával együtt a Szovjetunióba szökött. Utóbb több ex-KGB-s (például Pavel Szudoplatov) is állította, hogy Pontecorvót nem csupán egzotikus politikai meggyőződése hajtotta: aktív szovjet kém volt, aki a lebukást elkerülendő választotta az orosz klímát. Mindenesetre patronálói hagyták dolgozni az új hazájában Bruno Makszimovicsnak nevezett kutatót, így a müonbomlás és a neutrínók sajátosságai tanulmányozásának szentelhette életét. Annyi bizonyos, hogy számos tudományos munkája mérföldkőnek számít a részecskefizika, azon belül is a neutrínókutatás fejlődésében. Tőle származik az ötlet, hogyan lehet detektálni a nukleáris reaktorokban keletkező antineutrínókat (az ezt kidolgozó amerikai Frederick Reines 1995-ben kapott Nobel-díjat), de Pontecorvo jósolta meg azt is, hogy az elektronokhoz köthető neutronok tulajdonságai különböznek azoktól, melyeket a müonokkal asszociálunk (ennek kísérleti bizonyításáért 1988-ban kapta meg a Nobelt a J. Steinberger–L. Lederman–M. Schwartz trió). És ami most a legaktuálisabb: már 1957-ben előállt a neutrínóoszcilláció ötletével, a 60-as években pedig tudóstársaival együtt kidolgozta és publikálta a tudományterület matematikáját. A jelenséget kísérleti úton végül az idei két díjazott igazolta. Pontecorvo sosem kapott Nobel-díjat – úgy látszik, kémgyanús alakoknak nem jár.